THE GROUPS OF ORDER $p^3q^{\beta*}$

BY

F. N. COLE

§ 1. Introduction.

The researches of FROBENIUS† and BURNSIDE,‡ familiar to all students of the theory of groups, have established the non-existence of simple groups of orders pq^{β} and p^2q^{β} , p and q being different primes, and the consequent solvability of all groups of these orders. In the following paper I show that all groups of order p^3q^{β} are compound, and therefore also solvable. For convenience of reference I place at the beginning of the discussion the two following theorems of which repeated use is made in the subsequent reasoning:

I. A simple group \mathfrak{G} of order $g = p^{\alpha}q^{\beta}$, p and q being different primes and p > q, cannot contain any subgroup \mathfrak{F} of order h whose index g/h in \mathfrak{G} is $q > p^{\alpha}$.

In view of the results of Frobenius and Burnside cited above, we assume that $\alpha > 2$.

The case g/h < p is trivial. Here every group $\mathfrak A$ of order p^a in $\mathfrak G$ transforms every conjugate of $\mathfrak G$ into itself and $\mathfrak G$ is certainly compound. Again, for g/h = p, $h = p^{a-1}q^{\beta}$, every subgroup of order p^{a-1} in $\mathfrak G$ transforms $\mathfrak G$ and therefore every conjugate of $\mathfrak G$ into itself, and $\mathfrak G$ is again certainly compound.

Suppose, now, that \Re is the largest subgroup of \Im that contains \Im and is less that \Im . Since \Im is simple, \Re is invariant under only those elements of \Im which are contained in \Re . The index g/k of \Re in \Im is g/k and g/k distinct conjugates in \Im .

1) Let $g/k = pq^i$ ($0 < q^i < p$), $k = p^{a-1}q^{\beta-i}$. Having less than p^2 conjugates in \mathfrak{G} , \mathfrak{R} contains a subgroup of order p^{a-1} from every group \mathfrak{A} of order p^a in \mathfrak{G} . Every subgroup of order p^{a-1} of \mathfrak{R} is permutable with every subgroup \mathfrak{L} of order $g^{\beta-i}$ of \mathfrak{R} . \mathfrak{L} is invariant under a subgroup of \mathfrak{G} of order $g^{\beta-i+1}$, and this transforms \mathfrak{R} into at least one conjugate \mathfrak{R}' of \mathfrak{R} , different from \mathfrak{R} .

^{*} Presented to the Society February 27, 1904. Received for publication February 1, 1904.

[†]FROBENIUS: Berliner Sitzungsberichte, 1895, p. 185; cf. Acta Mathematica, vol. 26 (1902), p. 198.

[‡] BURNSIDE: Theory of Groups, p. 348. Cf. JORDAN, Liouville's Journal, ser. 5, vol. 4 (1898), pp. 21-26.

 $\mathfrak R$ and $\mathfrak R'$, having $\mathfrak L$ in common, have no group of order p^{a-1} in common. Then $\mathfrak L$ is permutable with two different groups of order p^{a-1} contained in the same group $\mathfrak A$ of order p^a , and is therefore permutable with $\mathfrak A$. $\mathfrak L$ and $\mathfrak A$ generate a group of order $p^aq^{\beta-i}$ contained in $\mathfrak G$ and having < p conjugates in $\mathfrak G$.

- 2) Let $g/k = q^j (p < q^j < p^2)$, $k = p^a q^{\beta j}$. As in 1), every conjugate of \Re contains a subgroup of order $p^{\alpha 1}$ from every group \Re of order p^α in \Im , and every subgroup \Re of order $q^{\beta j}$ of \Re occurs also in a conjugate \Re' of \Re different from \Re . \Re and \Re' have in common the group \Re and a group of order $p^{\alpha 1}$ from every group \Re of \Re or \Re' ; their greatest common subgroup \Im is of order $p^{\alpha 1} q^{\beta j}$. All the conjugates of \Im in \Re or \Re' are obtained by transforming \Im by any group \Re of \Re or \Re' . Hence all the subgroups of order $p^{\alpha 1}$ in \Im are common to all the conjugates of \Im in \Re and \Re' . The subgroups of order $p^{\alpha 1}$ of \Im generate a group invariant in \Re and in \Re' , and therefore in a group \Re contained in \Im and containing \Re and \Im \Re . Then \Re = \Im , and \Im is compound.
- II. If a simple group \mathfrak{G} of order $g = p^a q^{\beta}$, p and q being, as in I, different primes and p > q, contains a subgroup \mathfrak{F} of order $p^i q^j$ where $1 < q^{\beta j} < p$, then \mathfrak{F} is contained in a subgroup \mathfrak{F} of \mathfrak{G} of order $p^{i+x} q^{\beta}$ ($x \ge 0$, $i + x < \alpha$).

Suppose that the largest group containing $\mathfrak F$ and contained in $\mathfrak F$ and $<\mathfrak F$ is $\mathfrak R$ of order $k=p^{i+x}q^{j+y}(j+y<\beta)$; $\mathfrak R$ is invariant under only those elements of $\mathfrak F$ that are contained in $\mathfrak R$; having $< p^{a-i-x+1}$ conjugates in $\mathfrak F$, $\mathfrak R$ contains a subgroup of order p^{i+x} from every group $\mathfrak A$ of order p^a in $\mathfrak F$. If $i+x=\alpha$, $\mathfrak F$ is compound, by I. If $i+x<\alpha$ and $j+y<\beta$, a subgroup $\mathfrak F$ of order q^{j+y} of $\mathfrak R$ occurs in a conjugate $\mathfrak F$ of $\mathfrak R$ different from $\mathfrak F$. $\mathfrak F$ is permutable with two groups of order p^{i+x} from the same group $\mathfrak A$; these with $\mathfrak F$ generate a group $\mathfrak F$ of order $p^{i+x+z}q^{j+y}$ (z>0) containing $\mathfrak F$ and contained in $\mathfrak F$ and $<\mathfrak F$; but this is contrary to assumption.

A simple application of Theorem II is afforded by the groups of order p^2q^β (p>q>2). A simple group of this order must contain p^2 subgroups $\mathfrak B$ of order q^β , p of which have a common subgroup $\mathfrak D$ of order $q^r(r>0)$ invariant in a group $\mathfrak D'$ of order pq^{r+s} (s>0); p^2-1 is divisible by $q^{\beta-r}$, and p-1 by q^s , hence p-1 is divisible by $q^{\beta-r}$; $\mathfrak D'$ is contained in a subgroup of order pq^β of $\mathfrak G$. But then $\mathfrak G$ is compound. The theorem controls also the case q=2, except in the single event that s=1 and $p+1=2^{\beta-r-1}$.

§ 2. Preliminary treatment of the groups of order p^3q^8 .

A simple group of order $p^{\alpha}q^{\beta}$ ($p \leq q$) can occur only if $\alpha > 2\mu$, μ being the lowest index for which $p^{\mu} \equiv 1 \pmod{q}$.* For $\alpha = 3$, we can only take $\mu = 1$. A group $\mathfrak G$ of order p^3q^{β} can be simple only if $p \equiv 1 \pmod{q}$; also $\beta > 2\beta$, where $q^{\nu} \equiv 1$ (p), therefore $p^{\beta} > p^{\beta}$.

^{*}BURNSIDE, Theory of Groups, p. 345. Cf. FROBENIUS, Acta Mathematica, vol. 26 (1902), p. 194.

A simple group \mathfrak{G} of order p^3q^{β} must contain either p^2 or p^3 subgroups \mathfrak{B} of order q^{β} . Since $q^{\beta} > p^2$, the elements of these subgroups \mathfrak{B} cannot be wholly distinct in either case.

If $\mathfrak G$ contains only p^2 subgroups $\mathfrak B$, and if two of these are so chosen that the order q^r of their greatest common divisor $\mathfrak D$ is a maximum, then $\mathfrak D$ is invariant in a subgroup $\mathfrak D'$ of $\mathfrak G$ whose order is p^xq^{r+s} (x=1,2;s>0) and which contains exactly p groups of order q^{r+s} . Here p^2-1 is divisible by $q^{\beta-r}$, therefore $p+1 \geq q^{\beta-r-1}$. (If $q \neq 2$, p-1 is divisible by $q^{\beta-r}$, and $\mathfrak D'$ has less than p^2 conjugates in $\mathfrak G$ unless x=1. For odd q, the discussion can be greatly simplified, as in the case of order p^2q^β). Each of the $p^{3-s}q^{\beta-r-s}$ conjugate groups $\mathfrak D$ occurs in exactly p of the groups $\mathfrak B$. If each of the p^2 groups $\mathfrak B$ contains k of the groups $\mathfrak D$, the total number of the groups $\mathfrak D$ is $p^2k/p=p^{3-s}q^{\beta-r-s}$; hence $k=p^{2-s}q^{\beta-r-s}$. If now x=1, each group $\mathfrak B$ contains $pq^{\beta-r-s}$ groups $\mathfrak D$; each of the latter is contained in p-1 other groups $\mathfrak B$ and no two of them occur together in any second group $\mathfrak B$. But there are only p^2 of the groups $\mathfrak B$ and $p^2 < pq^{\beta-r-s}(p-1)+1$, unless $q^{\beta-r-s}=1$, $r+s=\beta$. Then $\mathfrak D'$ is of order pq^β , has exactly p^2 different conjugates in $\mathfrak G$, and therefore contains an element P of order p from every subgroup $\mathfrak A$ of order p^3 in $\mathfrak G$.

Let $\mathfrak A$ be any subgroup of order p^3 in $\mathfrak G$, and let $\mathfrak B$ occur in $\mathfrak D'$; having only p^2 conjugates in $\mathfrak G$, $\mathfrak B$ is invariant under an element P of order p in $\mathfrak A$; $\mathfrak B$ is also permutable with a subgroup $\mathfrak A_1$ of order p in $\mathfrak A$ not containing P. P transforms $\mathfrak D'$ into a conjugate of $\mathfrak D'$ different from $\mathfrak D'$ and containing the group $P^{-1}\mathfrak A_1P$, which is different from $\mathfrak A_1$ but is contained with $\mathfrak A_1$ in a subgroup $\mathfrak A_2$ of order p^2 of $\mathfrak A$. $\mathfrak B$ is permutable with both $\mathfrak A_1$ and $P^{-1}\mathfrak A_1P$ and therefore with $\mathfrak A_2$; $\mathfrak A_2$ and $\mathfrak A3$ generate a group of order p^2q^3 contained in $\mathfrak G$ and having only p conjugates in $\mathfrak G$.

Again, if x=2 each group $\mathfrak B$ contains $q^{\beta-r-s}$ of the groups $\mathfrak D$. The p groups $\mathfrak B$ which have subgroups of order q^{r+s} in a same group $\mathfrak D'$ contain $p(q^{\beta-r-s}-1)+1$ of the groups $\mathfrak D$, and these are transformed among themselves by every element of order p in $\mathfrak D'$. All the elements of order p in $\mathfrak D'$ are therefore permutable with each of the remaining p-1 groups $\mathfrak D$; they generate a group which is invariant in p groups $\mathfrak D'$ and therefore in a group $\mathfrak M$ of order $p^{2+y}q^{r+s+t}(y=0,1)$ contained in $\mathfrak G$. If y=1, $\mathfrak M$ has at most p+1 conjugates in $\mathfrak G$. And if y=0, t>0 and $\mathfrak M$ has at most $p(p+1)/q< p^2$ conjugates in $\mathfrak G$.

 $\mathfrak B$ must therefore contain p^3 sub-groups $\mathfrak B$. The maximum greatest common divisor $\mathfrak D$, of order q^r , of two of these is again invariant in a subgroup $\mathfrak D'$ of order $p^xq^{r+s}(x=1,\ 2)$ of $\mathfrak B$. Here p^3-1 is divisible by $q^{\beta-r}$, and p-1, being divisible by q, is divisible by $q^{\beta-r-1}$ (in fact by $q^{\beta-r}$ if $q \neq 3$). Then, by the reasoning employed in the proof of Theorem II, if $r+s<\beta$, $\mathfrak D'$ is contained in a sub-group of order p^2q^β of $\mathfrak B$. Hence $r+s=\beta$ and $\mathfrak D'$ is of order

 pq^{β} . Each group \mathfrak{D} is common to p groups \mathfrak{B} . If each group \mathfrak{B} contains k groups \mathfrak{D} , we have $p^3k/p=p^2$, hence k=1; each group \mathfrak{D}' contains precisely one group \mathfrak{D} . Each group \mathfrak{B} occurs in only one group \mathfrak{D}' .

§ 3. Final Investigation of the Groups of Order p^3q^{β} .

Each of the p^3 groups $\mathfrak B$ of $\mathfrak B$ transforms among themselves the p^3-p conjugates of $\mathfrak B$ not contained in the group $\mathfrak D'$ in which $\mathfrak B$ occurs. Let $\mathfrak D'$, and $\mathfrak B$ in $\mathfrak D'$, be so chosen that a subgroup Δ common to $\mathfrak B$ and a conjugate of $\mathfrak B$ not contained in $\mathfrak D'$ is of the largest possible order, and let this order be q^{ρ} . Then $q^{\beta-\rho}$ divides p^3-p , and therefore divides p^2-1 ; $\rho>0$, and in general $p>q^{\beta-\rho-1}$, the only exception occurring when q=2 and $p+1=2^{\beta-\rho-1}$. In this exceptional case $\beta-r=1$, $\mathfrak D$ is of order $2^{\beta-1}$.

The group Δ is common to two groups \mathfrak{B} from different groups \mathfrak{D}' . Δ is invariant under subgroups \mathfrak{R}_1 , \mathfrak{R}_2 of order $q^{\rho+\sigma_1}$, $q^{\rho+\sigma_2}(\sigma_1,\sigma_2>0)$ of these two groups \mathfrak{B} . \mathfrak{R}_1 and \mathfrak{R}_2 cannot be contained in any subgroup of \mathfrak{G} of order $q^{\rho+\tau}$ ($\tau>0$), for this subgroup would be common to two groups \mathfrak{D}' and therefore to two groups \mathfrak{B} contained one in each of these two groups \mathfrak{D}' . Δ is invariant in a subgroup Δ' of order $p^xq^{\rho+\sigma}(x,\sigma>0)$ of \mathfrak{G} . Any subgroup of order p^x of Δ' transforms \mathfrak{D}' containing Δ into precisely p groups \mathfrak{D}' each containing Δ , for Δ cannot occur in all the p^2 groups \mathfrak{D}' . Δ' has one or more subgroups of order $q^{\rho+\sigma}$ common with each of these p groups \mathfrak{D}' , and no subgroup of order $q^{\rho+\tau}(\tau>0)$ common with any other group \mathfrak{D}' . Hence Δ occurs in precisely p groups \mathfrak{D}' .

1) If $p > q^{\beta-\rho-1}$, or if $\sigma > 1$, then by Theorem II, Δ' is contained in a subgroup \mathfrak{M} of order pq^{β} of \mathfrak{G} (the order p^2q^{β} being inadmissible). \mathfrak{M} contains p groups \mathfrak{B} having Δ as their common subgroup; Δ is invariant in \mathfrak{M} , $\mathfrak{M} = \Delta'$, $\rho + \sigma = \beta$; and Δ has p^2 conjugates in \mathfrak{G} . If each group \mathfrak{D}' contains k groups Δ , then since each group Δ occurs in p groups \mathfrak{D}' we have $p^2k/p = p^2$, hence k = p.

If now two groups \mathfrak{D}' have more than one group Δ in common, their greatest common divisor \mathfrak{C} is of order pq^{ρ} and contains p groups Δ ; these are all the groups Δ contained in the two groups \mathfrak{D}' ; \mathfrak{C} is the smallest group that contains them; \mathfrak{C} is invariant in both groups \mathfrak{D}' and has $< p^2$ conjugates is \mathfrak{G} .

If no two groups \mathfrak{D}' have more than one group Δ in common, the p groups Δ contained in any group \mathfrak{D}' are distributed among p(p-1)+1 groups \mathfrak{D}' , and none of them occur in p-1 groups \mathfrak{D}' . All the elements of order p of a group \mathfrak{D}' are therefore permutable with each of p-1 other groups \mathfrak{D}' ; these elements of order p are common to p groups \mathfrak{D}' and are all the elements of order p of any of these p groups \mathfrak{D}' ; they generate a group invariant under the p groups \mathfrak{D}' and having p conjugates in p .

2) It remains to consider the special case q=2, $p+1=2^{\beta-\rho-1}$, $\sigma=1$, $r=\beta-1$. Let $\mathfrak{D}_{1}^{\prime}$, $\mathfrak{D}_{2}^{\prime}$ be two groups $\mathfrak{D}_{2}^{\prime}$ having a group Δ in common. Δ

cannot be the greatest common divisor of \mathfrak{D}'_1 and \mathfrak{D}'_2 , since either of the latter would then transform the other into $p \, 2^{\beta - \rho} > p^2$ conjugates. The greatest common divisor \mathfrak{C} of \mathfrak{D}'_1 , \mathfrak{D}'_2 is therefore of order $p \, 2^{\rho}$.

Suppose first that \mathfrak{C} contains only one group of order 2^{ρ} , that is, that Δ is invariant in \mathfrak{C} ; then Δ' contains \mathfrak{C} . If Δ' were of order $p \, 2^{p+1}$, \mathfrak{C} would be invariant in Δ' and would contain every element of order p of Δ' ; whereas Δ' must contain an element of order p or p^2 which transforms \mathfrak{D}'_1 into \mathfrak{D}'_2 . Δ' is of order $p^2 2^{\rho+1}$, and Δ has $p 2^{\beta-\rho-1} = p(p+1)$ conjugates in §. If each group \mathfrak{D}' contains k groups Δ , we have $p^2k/p = p(p+1)$, k = p+1. Since Δ is invariant under an element p of \mathfrak{D}' , Δ is contained in the group \mathfrak{D} occurring in \mathfrak{D}' ; the p+1 groups Δ occurring in \mathfrak{D}' are conjugate in \mathfrak{D}' and are therefore all contained in \mathfrak{D} . No two groups Δ occurring in the same group \mathfrak{D}' can occur together in any second group \mathfrak{D}' . The p groups \mathfrak{D}' which have Δ in common, contain $p^2 + 1$ groups Δ , and do not contain any one of the remaining p-1 groups Δ . Δ' transforms among themselves the p^2+1 groups Δ occurring with Δ in groups \mathfrak{D}' , and transforms among themselves the remaining p-1 groups Δ . All the elements of order p or p^2 in Δ' are permutable with these p-1 groups Δ ; they all occur in p groups Δ' and are all the elements of order p or p^2 of each of these groups Δ' ; they generate a group invariant under p groups Δ' and having $< p^2$ conjugates in \Im .

The group $\mathfrak C$ common to any two groups $\mathfrak D_1'$ and $\mathfrak D_2'$ must therefore contain pNo group Δ is contained in a group \mathfrak{D} , for then Δ would be invariant in \mathfrak{C} . Since \mathfrak{D} is of order $2^{\beta-1}$, Δ has a subgroup \mathfrak{S} of order $2^{\beta-1}$ common with D. S is invariant in C, since C cannot have two groups of order $2^{\rho-1}$ common with \mathfrak{D} . \mathfrak{S} is also invariant under subgroups of order $2^{\rho+\tau_1}$, $2^{\rho+\tau_2}$ (τ_1 , $\tau_2 \geq 0$) of \mathfrak{D}_1 and \mathfrak{D}_2 , and therefore under subgroups \mathfrak{L}_1 , \mathfrak{L}_2 of order $p \, 2^{\rho + \tau_1}$, $p \, 2^{\rho + \tau_2} (\tau_1, \ \tau_2 > 0)$ of \mathfrak{D}_1' and \mathfrak{D}_2' respectively. \mathfrak{L}_1 and \mathfrak{L}_2 cannot both be contained in a group of order $p \, 2^{\rho+\tau}$ containing §. The largest group S' contained in S and containing S as invariant subgroup is therefore of order $p^2 2^{\rho+\tau}$, where we must take $\tau=1$, by virtue of Theorem II. forms \mathfrak{D}' containing \mathfrak{S} into p groups \mathfrak{D}' containing \mathfrak{S} and has $p \, 2^{p+1}$ elements in common with each of these p groups \mathfrak{D}' . \mathfrak{S} does not occur in any other group \mathfrak{D}'_i . For any group of order p^2 in \mathfrak{S}' could transform \mathfrak{D}'_i into only pgroups \mathfrak{D}' ; \mathfrak{S}' would have an element P of order p common with \mathfrak{D}'_i ; \mathfrak{S} , being invariant under P, would be contained in \mathfrak{D}_i and would be invariant under a group of order 2^{ρ} of \mathfrak{D}_{i} ; this group of order 2^{ρ} would occur in \mathfrak{S}' and therefore in one of the p groups \mathfrak{D}' into which \mathfrak{S}' transforms \mathfrak{D}'_1 ; and this would lead to the case already disposed of where ${\mathfrak C}$ contains only one group Δ .

The group \mathfrak{S} has p(p+1) conjugates in \mathfrak{S} and p+1 conjugates in each group \mathfrak{D}' . The p(p+1) groups \mathfrak{S}' are all different. The p+1 conjugates of \mathfrak{S} which occur in \mathfrak{D}' are conjugate in \mathfrak{D}' and are all contained in \mathfrak{D} . No

two groups \mathfrak{D}' can have two groups \mathfrak{S} in common, since this would again lead to the rejected case where \mathfrak{S} contains only one group Δ . The p groups \mathfrak{D}' which have \mathfrak{S} in common contains p^2+1 groups \mathfrak{S} . \mathfrak{S}' transforms these p^2+1 groups \mathfrak{S} among themselves. All the elements of order p or p^2 in \mathfrak{S}' are permutable with each of the remaining p-1 groups \mathfrak{S} ; they generate a group invariant in p groups \mathfrak{S}' and having p conjugates in \mathfrak{S} .

COLUMBIA UNIVERSITY, January, 1904.